Lysyl oxidase promotes epithelial-to-mesenchymal transition during paraquat-induced pulmonary fibrosis.
نویسندگان
چکیده
Lysyl oxidase (LOX) is a copper-dependent amine oxidase that plays a critical role in pulmonary fibrosis. Our previous study demonstrated that epithelial-to-mesenchymal transition (EMT) was strongly associated with paraquat (PQ) induced pulmonary fibrosis. This present study was aimed to evaluate the potential involvement of LOX on EMT in the process of pulmonary fibrosis induced by PQ. We established an in vivo rat model and an in vitro cell model induced by PQ treatment and found that LOX protein expression was significantly up-regulated and collagen deposition was enhanced in rats. The EMT process was strongly found in A549 and RLE-6TN cells after PQ exposure. After inactivating LOX with an inhibitor, pulmonary fibrosis was significantly reduced and EMT was also suppressed. Additionally, small interfering RNA (siRNA) targeting LOX was used to silence LOX expression to observe EMT in A549 cells. As a result, LOX could promote the progress of EMT, and inactivating LOX alleviated the EMT process in PQ-induced pulmonary fibrosis and mesenchymal-to-epithelial transition (MET) occurred after inactivating LOX in vitro and in vivo. In conclusion, LOX could promote the progress of EMT and inactivating LOX alleviated EMT in PQ-induced pulmonary fibrosis. Therefore, LOX could potentially be a new candidate therapeutic target for pulmonary fibrosis induced by PQ by regulating the balance between EMT and MET.
منابع مشابه
Hypoxia-inducible factor-1α regulates epithelial-to-mesenchymal transition in paraquat-induced pulmonary fibrosis by activating lysyl oxidase
Pulmonary fibrosis (PF) is one of the most prevalent causes of death following paraquat (PQ) poisoning. As demonstrated in previous studies by the present authors, epithelial-to-mesenchymal transition (EMT) is associated with PQ-induced PF. In addition, hypoxia-inducible factor-1α (HIF-1α) and lysyl oxidase (LOX) promote EMT following PQ poisoning. However, the association between HIF-1α- and L...
متن کاملInvolvement of epithelial-to-mesenchymal transition and associated transforming growth factor-β/Smad signaling in paraquat-induced pulmonary fibrosis
Paraquat (PQ) is a highly toxic herbicide which is able to induce pulmonary fibrosis in humans and animals. The epithelial‑to‑mesenchymal transition (EMT) was demonstrated to be an important factor in pulmonary fibrosis. However, it has remained elusive whether PQ induces pulmonary fibrosis via EMT, which was therefore investigated in the present study. In addition, the underlying mechanisms of...
متن کاملParaquat Induces Epithelial-Mesenchymal Transition-Like Cellular Response Resulting in Fibrogenesis and the Prevention of Apoptosis in Human Pulmonary Epithelial Cells
The aim of this study is to investigate the molecular mechanisms underlying delayed progressive pulmonary fibrosis, a characteristic of subacute paraquat (PQ) poisoning. Epithelial-mesenchymal transition (EMT) has been proposed as a cause of organ fibrosis, and transforming growth factor-β (TGF-β) is suggested to be a powerful mediator of EMT. We thus examined the possibility that EMT is involv...
متن کاملA positive feedback loop promotes HIF‐1α stability through miR‐210‐mediated suppression of RUNX3 in paraquat‐induced EMT
Irreversible pulmonary fibrosis induced by paraquat (PQ) poisoning is the major cause of death in patients with PQ poisoning. The epithelial-mesenchymal transition (EMT) is postulated to be one of the main mechanisms of pulmonary fibrosis. Here, we investigated the role of miR-210 in PQ-induced EMT and its relationship with hypoxia-inducible factor-1α (HIF-1α). Western blotting, immunofluoresce...
متن کاملIntegrated long non‐coding RNA analyses identify novel regulators of epithelial‐mesenchymal transition in the mouse model of pulmonary fibrosis
Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease characterized by aberrant accumulation of fibroblast population and deposition of extra cellular matrix. Increasing evidence support that epithelial-mesenchymal transition (EMT) of alveolar epithelial cells is a critical process in the pathogenesis of IPF. Although delivery of bleomycin to induce acute lung injury is the most w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular bioSystems
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2016